Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
Más filtros

Medicinas Complementárias
Tipo del documento
Intervalo de año de publicación
1.
ACS Appl Mater Interfaces ; 16(11): 13439-13452, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38456847

RESUMEN

Inflammatory bowel diseases have a high rate of mortality and pose a serious threat to global public health. Selenium is an essential trace element, which has been shown to play important roles in redox control and antioxidant defense. Microorganisms play important roles in the reduction of toxic inorganic selenium (selenite and selenate) to less-toxic biogenic selenium nanoparticles (Bio-SeNPs), which have higher biocompatibility. In the present study, novel Bio-SeNPs with high stability were synthesized using probiotic Bifidobacterium animalis subsp. lactis H15, which was isolated from breastfed infant feces. The Bio-SeNPs with a size of 122 nm showed stability at various ionic strengths, temperatures, and in simulated gastrointestinal fluid, while chemosynthetic SeNPs underwent aggregation. The main surface protein in the Bio-SeNPs was identified as chaperone GroEL by liquid chromatography-tandem mass spectrometry. The overexpression and purification of GroEL demonstrated that GroEL controlled the assembly of Bio-SeNPs both in vitro and in vivo. In vivo, oral administration of Bio-SeNPs could alleviate dextran sulfate sodium-induced colitis by decreasing cell apoptosis, increasing antioxidant capacity and the number of proliferating cells, and improving the function of the intestinal mucosal barrier. In vitro experiments verified that Bio-SeNPs inhibited lipopolysaccharide-induced toll-like receptor 4/NF-κB signaling pathway activation. These results suggest that the Bio-SeNPs with high stability could have potential as a nutritional supplement for the treatment of colitis in nanomedicine applications.


Asunto(s)
Bifidobacterium animalis , Colitis , Nanopartículas , Selenio , Humanos , Selenio/química , Antioxidantes/farmacología , Antioxidantes/metabolismo , Bifidobacterium animalis/metabolismo , Nanopartículas/química , Colitis/inducido químicamente , Colitis/tratamiento farmacológico
2.
Nutrients ; 16(3)2024 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-38337634

RESUMEN

Different nutraceuticals are often considered by parents of infants and children with abdominal pain and disorders of the gut-brain interaction. Herb extracts and natural compounds have long been used in traditional medicine, but clinical pediatric trials are very limited. This narrative review based on relevant studies identified through a search of the literature in Pubmed and Medline updated to October 2023 focused on the effect of nutraceuticals in infantile colic, functional abdominal pain, and irritable bowel syndrome in children and adolescents. Significant reductions in colic episodes and crying time were reported in two studies on fennel (seeds oil or tea), in three studies on different multiple herbal extracts (all including fennel), in one study on Mentha piperita, and in at least two double-blind randomized controlled studies on Lactobacillus reuteri DSM 17938 and Bifidobacterium lactis BB-12 (108 CFU/day for at least 21 days) in breast-fed infants. Compared to a placebo, in children with functional abdominal pain or irritable bowel syndrome, a significant reduction in pain was reported in two studies supplementing peppermint oil capsules or psyllium fibers, and in one study on corn fiber cookies, partial hydrolyzed guar gum, a specific multiple herbal extract (STW-5), or vitamin D supplementation. To date, there is moderate-certainty evidence with a weak grade of recommendation on Lactobacillus reuteri DSM 17938 (108 CFU/day) in reducing pain intensity in children with functional abdominal pain and for Lactobacillus rhamnosus GG (1-3 × 109 CFU twice daily) in reducing pain frequency and intensity in children with IBS. Further large and well-designed pediatric studies are needed to prove the efficacy and safety of different herbal extracts and prolonged use of studied products in infants and children with pain disorders of the gut-brain interaction.


Asunto(s)
Bifidobacterium animalis , Cólico , Síndrome del Colon Irritable , Limosilactobacillus reuteri , Probióticos , Lactante , Adolescente , Humanos , Niño , Probióticos/uso terapéutico , Dolor Abdominal , Cólico/terapia , Cólico/microbiología , Suplementos Dietéticos , Encéfalo , Resultado del Tratamiento , Ensayos Clínicos Controlados Aleatorios como Asunto
3.
Int J Mol Sci ; 25(3)2024 Feb 02.
Artículo en Inglés | MEDLINE | ID: mdl-38339084

RESUMEN

The gut microbiota of healthy breastfed infants is often dominated by bifidobacteria. In an effort to mimic the microbiota of breastfed infants, modern formulas are fortified with bioactive and bifidogenic ingredients. These ingredients promote the optimal health and development of infants as well as the development of the infant microbiota. Here, we used INFOGEST and an in vitro batch fermentation model to investigate the gut health-promoting effects of a commercial infant formula supplemented with a blend containing docosahexaenoic acid (DHA) (20 mg/100 kcal), polydextrose and galactooligosaccharides (PDX/GOS) (4 g/L, 1:1 ratio), milk fat globule membrane (MFGM) (5 g/L), lactoferrin (0.6 g/L), and Bifidobacterium animalis subsp. lactis, BB-12 (BB-12) (106 CFU/g). Using fecal inoculates from three healthy infants, we assessed microbiota changes, the bifidogenic effect, and the short-chain fatty acid (SCFA) production of the supplemented test formula and compared those with data obtained from an unsupplemented base formula and from the breast milk control. Our results show that even after INFOGEST digestion of the formula, the supplemented formula can still maintain its bioactivity and modulate infants' microbiota composition, promote faster bifidobacterial growth, and stimulate production of SCFAs. Thus, it may be concluded that the test formula containing a bioactive blend promotes infant gut microbiota and SCFA profile to something similar, but not identical to those of breastfed infants.


Asunto(s)
Bifidobacterium animalis , Microbiota , Lactante , Femenino , Humanos , Fórmulas Infantiles , Leche Humana , Suplementos Dietéticos , Lactancia Materna , Bifidobacterium , Heces/microbiología , Oligosacáridos/farmacología
4.
Nutrients ; 15(21)2023 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-37960207

RESUMEN

(1) Background: Probiotics in the form of nutritional supplements are safe and potentially useful for strategic application among endurance athletes. Bifidobacterium animalis lactis BL-99 (BL-99) was isolated from the intestines of healthy Chinese infants. We combined plasma-targeted metabolomics and fecal metagenomics to explore the effect of 8 weeks of BL-99 supplementation on cross-country skiers' metabolism and sports performance. (2) Methods: Sixteen national top-level male cross-country skiers were recruited and randomly divided into a placebo group (C) and a BL-99 group (E). The participants took the supplements four times/day (with each of three meals and at 21:00) consistently for 8 weeks. The experiment was conducted in a single-blind randomized fashion. The subject's dietary intake and total daily energy consumption were recorded. Blood and stool samples were collected before and after the 8-week intervention, and body composition, muscle strength, blood biochemical parameters, plasma-targeted metabolomic data, and fecal metagenomic data were then analyzed. (3) Results: The following changes occurred after 8 weeks of BL-99 supplementation: (a) There was no significant difference in the average total daily energy consumption and body composition between the C and E groups. (b) The VO2max and 60°/s and 180°/s knee joint extensor strength significantly increased in both the C and E groups. By the eighth week, the VO2max and 60 s knee-joint extensor strength were significantly higher in the E group than in the C group. (c) The triglyceride levels significantly decreased in both the C and E groups. In addition, the LDL-C levels significantly decreased in the E group. (d) The abundance of Bifidobacterium animalis increased two-fold in the C group and forty-fold in the E group. (e) Plasma-targeted metabolomic analysis showed that, after eight weeks of BL-99 supplementation, the increases in DHA, adrenic acid, linoleic acid, and acetic acid and decreases in glycocholic acid and glycodeoxycholic acid in the E group were significantly higher than those in the C group. (f) Spearman correlation analysis showed that there was a significant positive correlation between Bifidobacterium animalis' abundance and SCFAs, PUFAs, and bile acids. (g) There was a significant correlation between the most significantly regulated metabolites and indicators related to sports performance and lipid metabolism. (4) Conclusions: Eight weeks of BL-99 supplementation combined with training may help to improve lipid metabolism and sports performance by increasing the abundance of Bifidobacterium, which can promote the generation of short-chain fatty acids and unsaturated fatty acids, and inhibit the synthesis of bile acids.


Asunto(s)
Rendimiento Atlético , Bifidobacterium animalis , Probióticos , Humanos , Masculino , Ácidos y Sales Biliares , Suplementos Dietéticos , Ácidos Grasos Volátiles/análisis , Metabolismo de los Lípidos , Método Simple Ciego
5.
Pediatr Allergy Immunol ; 34(8): e14004, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37622257

RESUMEN

BACKGROUND: As n-3 long-chain polyunsaturated fatty acids and probiotics possess immunomodulatory properties, theoretically they could lower the risk of allergic diseases. But their effects remain controversial. We aimed to study the effects of fish oil and probiotics separately or in combination from early pregnancy onwards to lower the risk of allergic diseases in the infants. METHODS: In this double-blind trial, women (n = 439) in early pregnancies were randomized into four intervention groups: fish oil + placebo, probiotics + placebo, fish oil + probiotics, and placebo + placebo. Fish oil (1.9 g docosahexaenoic acid and 0.22 g eicosapentaenoic acid) and probiotic (Lacticaseibacillus rhamnosus HN001 and Bifidobacterium animalis ssp. lactis 420, 1010 colony-forming units each) supplements were provided for daily consumption from randomization up to 6 months postpartum. All analyses were adjusted with pet ownership. RESULTS: No difference between the infants in the four intervention groups were found regarding physician-diagnosed food allergy, atopic eczema, or atopy at the age of 12 or 24 months (all p > .05). The probiotic intervention was associated with lower odds of recurrent wheezing at 24 months (OR 0.39, 95% CI 0.18-0.84, p = .017), but not at 12 months. CONCLUSIONS: The use of fish oil and/or probiotics from early pregnancy onwards did not lower the odds of childhood allergic diseases or atopy, with the exception of the probiotic intervention which decreased the risk of recurrent wheezing when the infants were two years old. This suggests that the incidence of asthma could also decrease later in childhood and thus these outcomes need to be clarified in further investigations.


Asunto(s)
Bifidobacterium animalis , Dermatitis Atópica , Ácidos Grasos Omega-3 , Hipersensibilidad , Probióticos , Femenino , Humanos , Embarazo , Niño , Aceites de Pescado , Ruidos Respiratorios , Hipersensibilidad/epidemiología , Hipersensibilidad/prevención & control , Probióticos/uso terapéutico
6.
Gut Microbes ; 15(1): 2197837, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37078654

RESUMEN

Dietary fibers/probiotics may relieve constipation via optimizing gut microbiome, yet with limited trial-based evidences. We aimed to evaluate the effects of formulas with dietary fibers or probiotics on functional constipation symptoms, and to identify modulations of gut microbiota of relevance. We conducted a 4-week double-blinded randomized placebo-controlled trial in 250 adults with functional constipation. Intervention: A: polydextrose; B: psyllium husk; C: wheat bran + psyllium husk; D: Bifidobacterium animalis subsp. lactis HN019 + Lacticaseibacillus rhamnosus HN001; Placebo: maltodextrin. Oligosaccharides were also included in group A to D. 16S rRNA sequencing was used to assess the gut microbiota at weeks 0, 2, and 4. A total of 242 participants completed the study. No time-by-group effect was observed for bowel movement frequency (BMF), Bristol stool scale score (BSS), and degree of defecation straining (DDS), while BSS showed mean increases of 0.95-1.05 in group A to D (all P < 0.05), but not significantly changed in placebo (P = 0.170), and 4-week change of BSS showed similarly superior effects of the interventions as compared placebo. Group D showed a marginal reduction in plasma 5-hydroxytryptamine. Group A resulted in a higher Bifidobacterium abundance than placebo at week 2 and 4. Fourteen genera showed intervention-specific increasing or decreasing trends continuously, among which Anaerostipes showed increasing trends in groups B and C, associated with BMF increase. Random forest models identified specific baseline microbial genera panels predicting intervention responders. In conclusion, we found that the dietary fibers or probiotics may relieve hard stool, with intervention-specific changes in gut microbiota relevant to constipation relief. Baseline gut microbiota may predispose the intervention responsiveness. ClincialTrials.gov number, NCT04667884.


What is the context?Supplementation of dietary fibers, such as psyllium husk or wheat bran (10 ~ 15 g/day) may relieve constipation symptoms, but bloating and flatulence are major concerns on a high fiber intake.Functional constipation patients had alternated gut microbiota profiles, while meta-analysis suggested that multispecies probiotics may increase bowel movement frequency and relieve hard stool in functional constipation.Dietary fibers or probiotics may lead to before-after changes of gut microbiota in patients with functional constipation, but time-series continued changes of gut microbiota during the intervention are unknown.Elevation of 5-hydroxytryptamine synthesis in enterochromaffin cells may affect bowel movement. And the elevated plasma 5-hydroxytryptamine was observed in functional constipation patients.What is new? Daily supplement of three prebiotic formulas with dietary fibers (polydextrose, psyllium husk, wheat bran, together with oligosaccharides), or a probiotic formula with Bifidobacterium animalis subsp. lactis HN019 + Lacticaseibacillus rhamnosus HN001 effectively relieved hard stool in functional constipation patients after 4 weeks intervention.We identified continued increasing or decreasing gut microbial genera over the intervention. Dietary fiber ­ gut microbiota (Anaerostipes)­constipation relieve (bowel movement frequency) evidence axis was identified in this human trial.Probiotic supplementation marginally reduced plasma 5-hydroxytryptamine, possibly associated with changes in BMF-related gut microbial genera.Intervention-specific baseline gut microbiota well predicted the responsiveness of constipation symptom relief.What is the impact? We provided references for the dosage and duration of dietary fiber/probiotics recommendations for adults with functional constipation, and advanced the microbial genera evidences of the fibers/probiotics-microbiota-laxation theory in humans.


Asunto(s)
Bifidobacterium animalis , Enfermedades Gastrointestinales , Microbioma Gastrointestinal , Probióticos , Psyllium , Adulto , Humanos , Fibras de la Dieta , ARN Ribosómico 16S , Estreñimiento/tratamiento farmacológico , Estreñimiento/microbiología , Probióticos/uso terapéutico , Método Doble Ciego
7.
Microbiol Spectr ; 11(3): e0444022, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37022264

RESUMEN

Hyperlipidemia is a key risk factor for cardiovascular disease, and it is associated with lipid metabolic disorders and gut microbiota dysbiosis. Here, we aimed to investigate the beneficial effects of 3-month intake of a mixed probiotic formulation in hyperlipidemic patients (n = 27 and 29 in placebo and probiotic groups, respectively). The blood lipid indexes, lipid metabolome, and fecal microbiome before and after the intervention were monitored. Our results showed that probiotic intervention could significantly decrease the serum levels of total cholesterol, triglyceride, and low-density lipoprotein cholesterol (P < 0.05), while increasing the levels of high-density lipoprotein cholesterol (P < 0.05) in patients with hyperlipidemia. Probiotic recipients showing improved blood lipid profile also exhibited significant differences in their lifestyle habits after the 3-month intervention, with an increase in daily intake of vegetable and dairy products, as well as weekly exercise time (P < 0.05). Moreover, two blood lipid metabolites (namely, acetyl-carnitine and free carnitine) significantly increased after probiotic supplementation cholesterol (P < 0.05). In addition, probiotic-driven mitigation of hyperlipidemic symptoms were accompanied by increases in beneficial bacteria like Bifidobacterium animalis subsp. lactis and Lactiplantibacillus plantarum in patients' fecal microbiota. These results supported that mixed probiotic application could regulate host gut microbiota balance, lipid metabolism, and lifestyle habits, through which hyperlipidemic symptoms could be alleviated. The findings of this study urge further research and development of probiotics into nutraceuticals for managing hyperlipidemia. IMPORTANCE The human gut microbiota have a potential effect on the lipid metabolism and are closely related to the disease hyperlipidemia. Our trial has demonstrated that 3-month intake of a mixed probiotic formulation alleviates hyperlipidemic symptoms, possibly by modulation of gut microbes and host lipid metabolism. The findings of the present study provide new insights into the treatment of hyperlipidemia, mechanisms of novel therapeutic strategies, and application of probiotics-based therapy.


Asunto(s)
Bifidobacterium animalis , Microbioma Gastrointestinal , Hiperlipidemias , Probióticos , Humanos , Carnitina/farmacología , Colesterol , Hiperlipidemias/tratamiento farmacológico , Hiperlipidemias/metabolismo , Estilo de Vida , Metabolismo de los Lípidos , Lípidos
8.
Eur J Nutr ; 62(2): 965-976, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36334119

RESUMEN

PURPOSE: Postmenopausal osteoporosis (PMO) is usually managed by conventional drug treatment. However, prolonged use of these drugs cause side effects. Gut microbiota may be a potential target for treatment of PMO. This work was a three-month intervention trial aiming to evaluate the added effect of probiotics as adjunctive treatment for PMO. METHODS: Forty patients with PMO were randomized into probiotic (n = 20; received Bifidobacterium animalis subsp. lactis Probio-M8 [Probio-M8], calcium, calcitriol) and placebo (n = 20; received placebo material, calcium, calcitriol) groups. The bone mineral density of patients was measured at month 0 (0 M; baseline) and month 3 (3 M; after three-month intervention). Blood and fecal samples were collected 0 M and 3 M. Only 15 and 12 patients from Probio-M8 and placebo groups, respectively, provided complete fecal samples for gut microbiota analysis. RESULTS: No significant change was observed in the bone mineral density of patients at 3 M. Co-administering Probio-M8 improved the bone metabolism, reflected by an increased vitamin D3 level and decreased PTH and procalcitonin levels in serum at 3 M. Fecal metagenomic analysis revealed modest changes in the gut microbiome in both groups at 3 M. Interestingly, Probio-M8 co-administration affected the gut microbial interactive correlation network, particularly the short-chain fatty acid-producing bacteria. Probio-M8 co-administration significantly increased genes encoding some carbohydrate metabolism pathways (including ABC transporters, the phosphotransferase system, and fructose and mannose metabolism) and a choline-phosphate cytidylyltransferase. CONCLUSIONS: Co-administering Probio-M8 with conventional drugs/supplements was more efficacious than conventional drugs/supplements alone in managing PMO. Our study shed insights into the beneficial mechanism of probiotic adjunctive treatment. REGISTRATION NUMBER OF CLINICAL TRIAL: Chinese Clinical Trial Registry (identifier number: ChiCTR1800019268).


Asunto(s)
Bifidobacterium animalis , Microbioma Gastrointestinal , Osteoporosis Posmenopáusica , Probióticos , Femenino , Humanos , Osteoporosis Posmenopáusica/tratamiento farmacológico , Calcitriol , Calcio
9.
Probiotics Antimicrob Proteins ; 15(3): 738-748, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-35031969

RESUMEN

Diarrhea is one of the most frequent side effects of antibiotic treatment and occurs in 25 to 40% of patients in use. One potential strategy to prevent this side effect is the concurrent use of probiotics. This study evaluated the efficacy of the strain Bifidobacterium lactis CCT 7858 in the prevention of diarrhea and improvement of gastrointestinal symptoms in hospitalized patients using antibiotics. This was a randomized, blinded, placebo-controlled clinical trial. This study included 104 patients in antibiotic treatment. Patients were randomized into two groups: placebo (maltodextrin) and intervention (strain Bifidobacterium lactis CCT 7858 at 9 × 1010 CFU concentration; GABBIA® Biotecnology, Santa Catarina, Brazil). Patients were supplemented depending on the duration of antibiotic therapy, and both were evaluated with scales in two moments: before and after treatment. We included 104 hospitalized patients. In follow-up, 38 (74.5%) of the B. lactis group have no reported diarrhea. In secondary outcomes, in five day strong abdominal distension was reported in 4 (7,3) placebo group and not reported in B. lactis. Abdominal noises, nausea, and vomiting were not registered in any group. B. lactis strain has been considered safe and with several benefits, including reduction of soft stools and gastrointestinal symptoms how abdominal noise, pain and distension, as well reduction of diarrhea.


Asunto(s)
Bifidobacterium animalis , Probióticos , Humanos , Antibacterianos/efectos adversos , Diarrea/tratamiento farmacológico , Diarrea/prevención & control , Suplementos Dietéticos , Resultado del Tratamiento
10.
Medicine (Baltimore) ; 101(45): e31030, 2022 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-36397441

RESUMEN

BACKGROUND: Probiotics had been used to decreased bilirubin level in neonatal jaundice (NJ) without being further studied mechanism and stratification. The intestinal pathogen Escherichia coli produced ß-glucuronidase would increase enterohepatic circulation and elevate serum bilirubin levels (SBLs) which might worsen the disease process of NJ. STUDY OBJECTIVE: We hypothesized that some probiotics could decrease bilirubin level through inhibiting the growth of E. coli. It's assumed that adjuvant probiotic intervention might accelerate the phototherapy for NJ and alleviate the severity of the NJ. Besides, it's further study the efficacy of the probiotic intervention in NJ among the full-term and preterm newborns. MATERIALS AND METHODS: Firstly, the Bifidobacterium animalis subsp. lactis CP-9 was screened for its anti-E. coli activity. Then, it was orally administered to newborns with NJ in combination with conventional phototherapy (wavelength 425-457 nm) to determine its efficacy. 83 neonatal patients whose serum bilirubinemia was at a concentration of ≥ 15 mg/dL were participated the double-blind randomized trial and conducted in the neonatal ward of China Medical University Children's Hospital (CMUCH, Taichung, Taiwan). The test was conducted in 2 groups: experimental group: phototherapy + B. animalis subsp. lactis CP-9 (n = 43; 5 × 109 CFU/capsule) and control group: phototherapy + placebo (n = 40). The SBL and total phototherapy duration were measured. RESULTS: The experimental group showed improved serum bilirubin decline rate (-0.16 ±â€…0.02 mg/dL/h; P = .009, 95% CI -0.12 to -0.2), particularly in the first 24 hour of in-hospital care, and reduced total phototherapy duration (44.82 ±â€…3.23 h; P = .011, 95% CI: 51.3-38.2) compared with the control group. Especially, probiotics had a significant therapeutic effect (serum bilirubin decline rate: -0.18 ±â€…0.02 mg/dL/h, 95% CI -0.12 to -0.23, P = .014; phototherapy duration: 43.17 ±â€…22.72 h, 95% CI 51.9-34.3, P = .019) in the low-risk subgroup (full-term newborns). CONCLUSIONS: In conclusion, B. animalis subsp. lactis CP-9 synergistically improves treatment outcomes of NJ during in-hospital phototherapy including reduced total phototherapy duration and improved serum bilirubin decline rate, particularly in full-term newborns.


Asunto(s)
Bifidobacterium animalis , Ictericia Neonatal , Probióticos , Niño , Humanos , Recién Nacido , Ictericia Neonatal/terapia , Probióticos/uso terapéutico , Resultado del Tratamiento , Bilirrubina
11.
Microbiol Spectr ; 10(6): e0297922, 2022 12 21.
Artículo en Inglés | MEDLINE | ID: mdl-36219101

RESUMEN

Alginate (ALG) is known to alleviate intestinal inflammation in inflammatory bowel disease, but its mechanism of action remains elusive. In the present study, we studied the involvement of the intestinal microbiota and bile acid (BA) metabolism in ALG-mediated anti-inflammatory effects in mice. A combination of 16S rRNA gene amplicon sequencing, shotgun metagenomic sequencing, and targeted BA metabolomic profiling was employed to investigate structural and functional differences in the colonic microbiota and BA metabolism in dextran sulfate sodium (DSS)-treated mice with or without dietary supplementation of ALG. We further explored the role of the intestinal microbiota as well as a selected ALG-enriched bacterium and BA in DSS-induced colitis. Dietary ALG alleviated DSS-mediated intestinal inflammation and enriched a small set of bacteria including Bifidobacterium animalis in the colon (P < 0.05). Additionally, ALG restored several bacteria carrying secondary BA-synthesizing enzymes such as 7α-hydroxysteroid dehydrogenase and BA hydrolase to healthy levels in DSS-treated mice. Although a majority of BAs were suppressed by DSS, a few secondary BAs such as hyodeoxycholic acid (HDCA) were markedly enriched by ALG. Furthermore, ALG significantly upregulated the expression of a major BA receptor, the farnesoid X receptor, while suppressing NF-κB and c-Jun N-terminal kinase (JNK) activation. Depletion of the intestinal microbiota completely abrogated the protective effect of ALG in DSS-treated mice. Similar to ALG, B. animalis and HDCA exerted a strong anti-inflammatory effect in DSS-induced colitis by downregulating inflammatory cytokines (interleukin-1ß [IL-1ß], IL-6, and tumor necrosis factor alpha [TNF-α]). Taken together, these results indicated that ALG achieves its alleviating effect on intestinal inflammation through regulation of the microbiota by enriching B. animalis to promote the biosynthesis of specific secondary BAs such as HDCA. These findings have revealed intricate interactions among the intestinal microbiota, BA metabolism, and intestinal health and further provided a novel strategy to improve intestinal health through targeted manipulation of the intestinal microbiota and BA metabolism. IMPORTANCE ALG has been shown to ameliorate inflammatory bowel disease (IBD), but little is known about the mechanism of its anti-inflammatory action. This study was the first to demonstrate that ALG provided a preventive effect against colitis in an intestinal microbiota-dependent manner. Furthermore, we confirmed that by selectively enriching intestinal B. animalis and secondary BA (HDCA), ALG contributed to the attenuation of DSS-induced colitis. These findings contribute to a better understanding of the mechanism of action of ALG on the attenuation of colitis and provide new approaches to IBD therapy by regulating gut microbial BA metabolism.


Asunto(s)
Bifidobacterium animalis , Colitis , Enfermedades Inflamatorias del Intestino , Ratones , Animales , Sulfato de Dextran/toxicidad , Alginatos/efectos adversos , Alginatos/metabolismo , ARN Ribosómico 16S/genética , Colitis/inducido químicamente , Colitis/terapia , Colon/microbiología , Antiinflamatorios/efectos adversos , Inflamación/metabolismo , Modelos Animales de Enfermedad
12.
Appl Environ Microbiol ; 88(22): e0129622, 2022 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-36300953

RESUMEN

Probiotics are widely used to promote performance and improve gut health in weaning piglets. Therefore, the objective of this study was to investigate the effects of dietary supplementation with Bifidobacterium animalis subsp. lactis (B. animalis) JYBR-190 on the growth performance, intestine health, and gut microbiota of weaning piglets. The results showed that the dietary addition of B. animalis significantly improved growth performance and decreased diarrhea incidence. B. animalis increased villus height in the duodenum and elevated goblet cell numbers and amylase activity in the jejunum. Additionally, B. animalis supplementation markedly increased total antioxidant capacity in jejunal mucosa but declined the malondialdehyde content. B. animalis treatment did not affect the mRNA expressions associated with the intestinal barrier and inflammatory cytokine in various intestinal segments. Microbiota analysis indicated that a diet supplemented with B. animalis significantly increased the relative abundances of health-promoting bacteria in the lumen, such as Streptococcus, Erysipelotrichaceae, Coprococcus, and Oscillibacter. There was a trend for B. animalis fed piglets to have a higher relative abundance of B. animalis in ileal digesta. Moreover, B. animalis-treated pigs decreased the abundance of Helicobacter and Escherichia-Shigella in ileal mucosa-associated microbiota. In summary, this study showed that B. animalis supplementation stimulated growth performance, improved gut development, enriched beneficial bacteria abundances, and declined intestinal pathogens populations, while B. animalis had limited effects on the intestinal barrier and immune function. IMPORTANCE In the modern swine industry, weaning is a critical period in the pig's life cycle. Sudden dietary, social, and environmental changes can easily lead to gut microbiota dysbiosis, diarrhea, and a decrease in growth performance. To stabilize intestinal microbiota and promote animal growth, antibiotics were widely applied in swine diets during the past few decades. However, the side effects of antibiotics posed a great threat to public health and food safety. Therefore, it is urgent to find and develop antibiotic alternatives. The growing evidence suggested that probiotics can be preferable alternatives to antibiotics because they can modulate microbiota composition and resist pathogens colonization. In this study, our results indicated that dietary supplementation with Bifidobacterium animalis promoted growth in weaning piglets by improving gut development, increasing beneficial bacteria abundances, and declining pathogens populations.


Asunto(s)
Bifidobacterium animalis , Microbioma Gastrointestinal , Porcinos , Animales , Destete , Antioxidantes/metabolismo , Bifidobacterium animalis/metabolismo , Suplementos Dietéticos/análisis , Dieta/veterinaria , Diarrea , Bacterias/metabolismo , Antibacterianos , Alimentación Animal/análisis
13.
J Microbiol Biotechnol ; 32(9): 1146-1153, 2022 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-36168203

RESUMEN

Many probiotic species have been used as a fermentation starter for manufacturing functional food materials. We have isolated Bifidobacterium animalis subsp. lactis LDTM 8102 from the feces of infants as a novel strain for fermentation. While Glycine max has been known to display various bioactivities including anti-oxidant, anti-skin aging, and anti-cancer effects, the immune-modulatory effect of Glycine max has not been reported. In the current study, we have discovered that the extract of Glycine max fermented with B. animalis subsp. lactis LDTM 8102 (GFB 8102), could exert immuno-modulatory properties. GFB 8102 treatment increased the production of immune-stimulatory cytokines in RAW264.7 macrophages without any noticeable cytotoxicity. Analysis of the molecular mechanism revealed that GFB 8102 could upregulate MAPK2K and MAPK signaling pathways including ERK, p38, and JNK. GFB 8102 also increased the proliferation rate of splenocytes isolated from mice. In an animal study, administration of GFB 8102 partially recovered cyclophosphamide-mediated reduction in thymus and spleen weight. Moreover, splenocytes from the GFB 8102-treated group exhibited increased TNF-α, IL-6, and IL-1ß production. Based on these findings, GFB 8102 could be a promising functional food material for enhancing immune function.


Asunto(s)
Bifidobacterium animalis , Probióticos , Animales , Antioxidantes/metabolismo , Ciclofosfamida , Citocinas/metabolismo , Humanos , Inmunidad , Interleucina-6/metabolismo , Ratones , Extractos Vegetales/metabolismo , Glycine max/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
14.
mSystems ; 7(2): e0010022, 2022 04 26.
Artículo en Inglés | MEDLINE | ID: mdl-35343796

RESUMEN

Accumulating evidence suggests that gut dysbiosis may play a role in cardiovascular problems like coronary artery disease (CAD). Thus, target steering the gut microbiota/metabolome via probiotic administration could be a promising way to protect against CAD. A 6-month randomized, double-blind, placebo-controlled clinical trial was conducted to investigate the added benefits and mechanism of the probiotic strain, Bifidobacterium lactis Probio-M8, in alleviating CAD when given together with a conventional regimen. Sixty patients with CAD were randomly divided into a probiotic group (n = 36; received Probio-M8, atorvastatin, and metoprolol) and placebo group (n = 24; placebo, atorvastatin, and metoprolol). Conventional treatment significantly improved the Seattle Angina Questionnaire (SAQ) scores of the placebo group after the intervention. However, the probiotic group achieved even better SAQ scores at day 180 compared with the placebo group (P < 0.0001). Moreover, Probio-M8 treatment was more conducive to alleviating depression and anxiety in patients (P < 0.0001 versus the placebo group, day 180), with significantly lower serum levels of interleukin-6 and low-density lipoprotein cholesterol (P < 0.005 and P < 0.001, respectively). In-depth metagenomic analysis showed that, at day 180, significantly more species-level genome bins (SGBs) of Bifidobacterium adolescentis, Bifidobacterium animalis, Bifidobacterium bifidum, and Butyricicoccus porcorum were detected in the probiotic group compared with the placebo group, while the abundances of SGBs representing Flavonifractor plautii and Parabacteroides johnsonii decreased significantly among the Probio-M8 receivers (P < 0.05). Furthermore, significantly more microbial bioactive metabolites (e.g., methylxanthine and malonate) but less trimethylamine-N-oxide and proatherogenic amino acids were detected in the probiotic group than placebo group during/after intervention (P < 0.05). Collectively, we showed that coadministering Probio-M8 synergized with a conventional regimen to improve the clinical efficacy in CAD management. The mechanism of the added benefits was likely achieved via probiotic-driven modulation of the host's gut microbiota and metabolome, consequently improving the microbial metabolic potential and serum metabolite profile. This study highlighted the significance of regulating the gut-heart/-brain axes in CAD treatment. IMPORTANCE Despite recent advances in therapeutic strategies and drug treatments (e.g., statins) for coronary artery disease (CAD), CAD-related mortality and morbidity remain high. Active bidirectional interactions between the gut microbiota and the heart implicate that probiotic application could be a novel therapeutic strategy for CAD. This study hypothesized that coadministration of atorvastatin and probiotics could synergistically protect against CAD. Our results demonstrated that coadministering Probio-M8 with a conventional regimen offered added benefits to patients with CAD compared with conventional treatment alone. Our findings have provided a wide and integrative view of the pathogenesis and novel management options for CAD and CAD-related diseases.


Asunto(s)
Adyuvantes Inmunológicos , Bifidobacterium animalis , Enfermedad de la Arteria Coronaria , Humanos , Adyuvantes Farmacéuticos , Atorvastatina , Encéfalo , Metoprolol
15.
Nutrients ; 14(3)2022 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-35276956

RESUMEN

Fatty acid ß-oxidation (FAO) is confirmed to be impaired in obesity, especially in adipose tissues. We previously proved that Bifidobacterium animalis subsp. lactis A6 (BAA6) had protective effects against diet-induced obesity. However, whether BAA6 enhances FAO to ameliorate the development of obesity has not been explored. After being fed with high-fat diet (HFD) for 9 weeks, male C57BL/6J mice were fed HFD or BAA6 for 8 weeks. In vitro study was carried out using 3T3-L1 adipocytes to determine the effect of BAA6 culture supernatant (BAA6-CM). Here, we showed that administration of BAA6 to mice fed with HFD decreased body weight gain (by 5.03 g) and significantly up-regulated FAO in epididymal adipose tissues. In parallel, FAO in 3T3-L1 cells was increased after BAA6-CM treatment. Acetate was identified as a constituent of BAA6-CM that showed a similar effect to BAA6-CM. Furthermore, acetate treatment activated the GPR43-PPARα signaling, thereby promoting FAO in 3T3-L1 cells. The levels of acetate were also elevated in serum and feces (by 1.92- and 2.27-fold) of HFD-fed mice following BAA6 administration. The expression levels of GPR43 and PPARα were increased by 55.45% and 69.84% after BAA6 supplement in the epididymal fat of mice. Together, these data reveal that BAA6 promotes FAO of adipose tissues through the GPR43-PPARα signaling, mainly by increasing acetate levels, leading to alleviating the development of obesity.


Asunto(s)
Bifidobacterium animalis , Tejido Adiposo/metabolismo , Animales , Dieta Alta en Grasa/efectos adversos , Ácidos Grasos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/etiología , Obesidad/metabolismo
16.
Probiotics Antimicrob Proteins ; 14(6): 1012-1028, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-34458959

RESUMEN

Avian pathogenic E. coli (APEC), an extra-intestinal pathogenic E. coli (ExPEC), causes colibacillosis in poultry and is also a potential foodborne zoonotic pathogen. Currently, APEC infections in poultry are controlled by antibiotic medication; however, the emergence of multi-drug-resistant APEC strains and increased restrictions on the use of antibiotics in food-producing animals necessitate the development of new antibiotic alternative therapies. Here, we tested the anti-APEC activity of multiple commensal and probiotic bacteria in an agar-well diffusion assay and identified Lacticaseibacillus rhamnosus GG and Bifidobacterium lactis Bb12 producing strong zone of inhibition against APEC. In co-culture assay, L. rhamnosus GG and B. lactis Bb12 completely inhibited the APEC growth by 24 h. Further investigation revealed that antibacterial product(s) in the culture supernatants of L. rhamnosus GG and B. lactis Bb12 were responsible for the anti-APEC activity. The analysis of culture supernatants using LC-MS/MS identified multiple novel bioactive peptides (VQAAQAGDTKPIEV, AFDNTDTSLDSTFKSA, VTDTSGKAGTTKISNV, and AESSDTNLVNAKAA) in addition to the production of lactic acid. The oral administration (108 CFU/chicken) of L. rhamnosus GG significantly (P < 0.001) reduced the colonization (~ 1.6 logs) of APEC in the cecum of chickens. Cecal microbiota analysis revealed that L. rhamnosus GG moderated the APEC-induced alterations of the microbial community in the cecum of chickens. Further, L. rhamnosus GG decreased (P < 0.05) the abundance of phylum Proteobacteria, particularly those belonging to Enterobacteriaceae (Escherichia-Shigella) family. These studies indicate that L. rhamnosus GG is a promising probiotic to control APEC infections in chickens. Further studies are needed to optimize the delivery of L. rhamnosus GG in feed or water and in conditions simulating the field to facilitate its development for commercial applications.


Asunto(s)
Bifidobacterium animalis , Infecciones por Escherichia coli , Lacticaseibacillus rhamnosus , Enfermedades de las Aves de Corral , Probióticos , Animales , Escherichia coli , Pollos , Cromatografía Liquida , Espectrometría de Masas en Tándem , Infecciones por Escherichia coli/microbiología , Probióticos/farmacología , Enfermedades de las Aves de Corral/tratamiento farmacológico , Enfermedades de las Aves de Corral/prevención & control , Enfermedades de las Aves de Corral/microbiología , Antibacterianos/farmacología , Aves de Corral , Péptidos/farmacología
17.
São Paulo; s.n; s.n; 2022. 94 p. tab, graf, ilus.
Tesis en Portugués | LILACS | ID: biblio-1396412

RESUMEN

Um dos maiores desafios no desenvolvimento de produtos probióticos é entender como os microrganismos interagem entre si e com o hospedeiro. Quando falamos em alimentos fermentados tradicionais, este obstáculo aumenta porque a matriz alimentar já possui um microbioma intrínseco. No entanto, também é conhecido que muitos microrganismos podem interagir e cooperar para sobreviver quando condições de estresse são encontradas. Assim, o objetivo deste trabalho foi isolar leveduras de quatro diferentes kombuchas em distintos momentos fermentativos e verificar a influência que leveduras isoladas de kombucha têm na manutenção da viabilidade da bactéria probiótica Bifidobacterium animalis subsp. lactis HN019 em condições de aerobiose. Meyerozyma guilliermondii, Candida albicans, Rhodotorula mucilaginosa e Pichia membranifaciens foram leveduras encontradas nas kombuchas, das quais as duas últimas favoreceram a manutenção da alta viabilidade de HN019 em cocultura por 14 dias. Observou-se a viabilidade da bactéria acima de 9 log ao longo de todo o experimento, o que não foi observado em monocultura. Ademais, utilizou-se de análise de autoagregação, hidrofobicidade, atividade enzimática de proteases e fosfolipases das leveuras para analisar seu potencial patogênico. Observou-se que R. mucilaginosa demonstrou características semelhantes à Saccharomyces cerevisiae subsp. boulardii, e sua interação benéfica com HN019 reforça a possibilidade de que esta levedura seja uma chave para a inserção da bactéria em uma kombucha probiótica. Análises metabólicas foram realizadas e encontrou-se uma vasta diversidade de dipeptídeos, principalmente os compostos de prolina, durante a cocultura da bactéria com as leveduras. Tais dipeptídeos apresentam importantes mecanismos de ação no controle biológico e quorum sensing de bactérias e leveduras, e supostamente regulam a manutenção das relações mutualísticas entre ambos microrganismo


One of the biggest challenges in the development of probiotic products is to understand how microorganisms interact with each other and with the host. When we talk about traditional fermented foods, this obstacle increases because the food matrix already has an intrinsic microbiome. However, it is also known that many microorganisms can interact and cooperate to survive when stressful situations are encountered. Thus, the objective of this work was to isolate yeasts from four different kombuchas at different fermentation times and to verify the influence that yeasts isolated from kombucha have on maintaining the viability of the probiotic bacterium Bifidobacterium animalis subsp. lactis HN019 under aerobic conditions. Meyerozyma guilliermondii, Candida albicans, Rhodotorula mucilaginosa and Pichia membranifaciens were yeasts found in kombuchas, of which the last two favored the maintenance of HN019 high viability in co-culture for 14 days. Bacteria viability above 9 log was observed throughout the experiment, which was not observed in monoculture. In addition, analysis of autoaggregation, hydrophobicity, enzyme activity of proteases and phospholipases of yeasts was used to analyze their pathogenic potential. It was observed that R. mucilaginosa demonstrated characteristics similar to Saccharomyces cerevisiae subsp. boulardii, and its beneficial interaction with HN019 reinforces the possibility that this yeast is a key to the insertion of the bacterium in a probiotic kombucha. Metabolic analysis were performed and a wide diversity of dipeptides, mainly proline-based, was found during the co-culture of the bacteria with the yeasts. Such dipeptides have important mechanisms of action in the biological control and quorum sensing of bacteria and yeast, and supposedly regulate the maintenance of mutualistic relationships between both microorganism


Asunto(s)
Levaduras/clasificación , Té de Kombucha/análisis , Alimentos Fermentados/análisis , Rhodotorula/clasificación , Técnicas de Cocultivo/métodos , Probióticos , Dipéptidos/agonistas , Microbiota , Bifidobacterium animalis/patogenicidad
18.
Urol J ; 19(3): 179-188, 2021 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-34129232

RESUMEN

PURPOSE: To determine the effect of a probiotic supplement containing native Lactobacillus acidophilus (L. acidophilus) and Bifidobacterium animalis lactis (B. lactis) on 24-hour urine oxalate in recurrent calcium stone formers with hyperoxaluria. Moreover, the in-vitro oxalate degradation capacity and the intestinal colonization of consumed probiotics were evaluated. MATERIALS AND METHODS: The oxalate degrading activity of L. acidophilus and B. lactis were evaluated in-vitro. The presence of oxalyl-CoA decarboxylase (oxc) gene in the probiotic species was assessed. One hundred patients were randomized to receive the probiotic supplement or placebo for four weeks. The 24-hour urine oxalate and the colonization of consumed probiotics were assessed after weeks four and eight. RESULTS: Although the oxc gene was present in both species, only L. acidophilus had a good oxalate degrading activity, in-vitro. Thirty-four patients from the probiotic and thirty patients from the placebo group finished the study. The urine oxalate changes were not significantly different between groups (57.21 ± 11.71 to 49.44 ± 18.14 mg/day for probiotic, and 56.43 ± 9.89 to 50.47 ± 18.04 mg/day for placebo) (P = .776). The probiotic consumption had no significant effect on urine oxalate, both in univariable (P = .771) and multivariable analyses (P = .490). The consumed probiotics were not detected in the stool samples of most participants. CONCLUSION: Our results showed that the consumption of a probiotic supplement containing L. acidophilus and B. lactis did not affect urine oxalate. The results may be due to a lack of bacterial colonization in the intestine.


Asunto(s)
Bifidobacterium animalis , Hiperoxaluria , Cálculos Renales , Probióticos , Bifidobacterium animalis/metabolismo , Calcio , Método Doble Ciego , Humanos , Cálculos Renales/terapia , Lactobacillus/metabolismo , Lactobacillus acidophilus/metabolismo , Oxalatos/metabolismo , Probióticos/uso terapéutico
19.
J Microbiol ; 59(4): 417-425, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33779954

RESUMEN

Probiotics are known to protect against liver damage induced by the alcohol and acetaldehyde accumulation associated with alcohol intake. However, there have been few studies of the direct effect of probiotics on alcohol metabolism, and the types of probiotics that were previously analyzed were few in number. Here, we investigated the effects of 19 probiotic species on alcohol and acetaldehyde metabolism. Four probiotic species that had a relatively high tolerance to alcohol and metabolized alcohol and acetaldehyde effectively were identified: Lactobacillus gasseri CBT LGA1, Lactobacillus casei CBT LC5, Bifidobacterium lactis CBT BL3, and Bifidobacterium breve CBT BR3. These species also demonstrated high mRNA expression of alcohol and acetaldehyde dehydrogenases. ProAP4, a mixture of these four probiotics species and excipient, was then administered to rats for 2 weeks in advance of acute alcohol administration. The serum alcohol and acetaldehyde concentrations were significantly lower in the ProAP4-administered group than in the control and excipient groups. Thus, the administration of ProAP4, containing four probiotic species, quickly lowers blood alcohol and acetaldehyde concentrations in an alcohol and acetaldehyde dehydrogenasedependent manner. Furthermore, the serum alanine aminotransferase activity, which is indicative of liver damage, was significantly lower in the ProAP4 group than in the control group. The present findings suggest that ProAP4 may be an effective means of limiting alcohol-induced liver damage.


Asunto(s)
Acetaldehído/sangre , Alcohol Deshidrogenasa/metabolismo , Aldehído Oxidorreductasas/metabolismo , Etanol/sangre , Probióticos/administración & dosificación , Alanina Transaminasa/sangre , Alcohol Deshidrogenasa/genética , Consumo de Bebidas Alcohólicas/metabolismo , Aldehído Oxidorreductasas/genética , Animales , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Bifidobacterium animalis/genética , Bifidobacterium animalis/metabolismo , Bifidobacterium breve/genética , Bifidobacterium breve/metabolismo , Suplementos Dietéticos , Lacticaseibacillus casei/genética , Lacticaseibacillus casei/metabolismo , Lactobacillus gasseri/genética , Lactobacillus gasseri/metabolismo , Masculino , ARN Bacteriano , Ratas , Ratas Sprague-Dawley , Reacción en Cadena en Tiempo Real de la Polimerasa
20.
J Dairy Sci ; 104(5): 5239-5255, 2021 May.
Artículo en Inglés | MEDLINE | ID: mdl-33663840

RESUMEN

Synbiotic dietary supplements, as an effective means of regulating the gut microbiota, may have a beneficial effect on constipation. This study evaluated the effects of synbiotic yogurt containing konjac mannan oligosaccharides (KMOS) and Bifidobacterium animalis ssp. lactis BB12 (BB12) on constipated Kunming mice (the model group). Following administration of yogurt containing 2.0% KMOS and BB12 (YBK2.0), black fecal weight and number and gastrointestinal transit rate increased by 97.5, 106.3, and 55.7%, respectively, compared with the model group. Serum levels of excitability neurotransmitters (motilin, substance P, and acetylcholine) in the YBK2.0 group were increased by 139.7, 120.4, and 91.8%, respectively, and serum levels of inhibitory neurotransmitters (vasoactive intestinal peptide, nitric oxide, and acetylcholine) were decreased. Moreover, synbiotic yogurt supplementation significantly downregulated the expression of vasoactive intestinal peptide receptor 1 (VIPR1) and upregulated the expression of serotonin receptor 4 (5-HT4) in the colon, and enhanced the expression of the stem cell factor (SCF)/c-Kit pathway. Additionally, YBK2.0 treatment significantly regulated the community composition and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways of gut microbiota, which were positively correlated with physiological parameters of constipation. Thus, supplementation with synbiotic yogurt composed of KMOS and BB12 could facilitate fecal excretion by regulating related pathways and the gut microbiota. These findings demonstrated that the synbiotic yogurt can be considered a functional food for alleviating constipation.


Asunto(s)
Bifidobacterium animalis , Microbioma Gastrointestinal , Probióticos , Simbióticos , Animales , Estreñimiento/terapia , Estreñimiento/veterinaria , Mananos , Ratones , Oligosacáridos , Factor de Células Madre , Yogur
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA